

Python Cheatsheet for Beginners

With Simple Explanations for Every Function

 1. print() – Show Output

print("Hello, world!")

What it does: It shows text or values on the screen.

Use it to: See results, debug, or communicate with users.

 2. Comments – Notes in Your Code

Single-line comment

This is a comment

Multi-line comment

"""

This is a

multi‐line comment

"""

Why use them? To explain your code so you or others can understand it later.

Python ignores comments when running your program.

 3. Variables – Store Information

name = "Impala" # String

age = 25 # Integer

height = 5.8 # Float

is_happy = True # Boolean

What is a variable? A container for storing values.

You can store text, numbers, or True/False values.

 4. Data Types – Kinds of Information

Data Type Example What It is

Int 10, -5 Whole number

float 3.14, 7.0 Decimal number

str "hello" Text

bool True, False Yes/No or On/Off logic

Use type() to check what type it is:

print(type(name)) # <class 'str'>

 5. Math Operators – Do Calculations

x = 10

y = 3

x + y # 13 (addition)

x ‐ y # 7 (subtraction)

x * y # 30 (multiplication)

x / y # 3.33 (division)

x // y # 3 (floor division)

x % y # 1 (remainder)

x ** y # 1000 (power)

These are used to do math in Python.

 6. Strings – Text Handling

greeting = "Hello"

print(greeting.upper()) # HELLO

print(greeting.lower()) # hello

print(len(greeting)) # 5

print(greeting[0]) # H

What is a string? A bunch of characters (text).

Indexing lets you pick one letter at a time.

Use f-strings to add variables into strings:

name = "Impala"

print(f"Hi, I'm {name}!")

 7. Lists – Store Many Values

fruits = ["apple", "banana", "mango"]

print(fruits[1]) # banana

fruits.append("grape") # Add item

fruits.remove("banana") # Remove item

A list holds many items.

It can grow or shrink as you add or remove things.

 8. Tuples – Fixed Collections

person = ("John", 30)

print(person[0]) # John

Like a list, but you cannot change the items once created.

 9. Dictionaries – Key-Value Pairs

person = {"name": "Alice", "age": 25}

print(person["name"]) # Alice

person["age"] = 26

A dictionary stores information with a key and a value.

Keys are like labels, values are the data.

 10. Conditional Statements – Make Decisions

age = 20

if age >= 18:

print("Adult")

else:

print("Minor")

Use if, elif, else to choose what to do based on a condition.

 11. Loops – Repeat Code

For loop

for i in range(5):

print(i) # 0 to 4

While loop

count = 0

while count < 3:

print("Counting...")

count += 1

When to use them? When you want to do something multiple times.

 12. Functions – Reusable Code

def greet(name):

print(f"Hello, {name}!")

greet("Impala") # Hello, Impala!

A function is a block of code you can use over and over.

Define it with def, then call it when you need it.

 13. input() – Get User Input

name = input("Enter your name: ")

print("Welcome,", name)

This pauses the program and waits for user input.

It always returns a string, even if you type a number.

 14. Type Conversion

age = input("Your age? ") # string

age = int(age) # convert to int

print(age + 1)

Use int(), float(), str() to change the type of a value.

 15. Built-in Functions (Most Useful)

Function What It Does

print() Shows text or values

input() Gets input from the user

len() Counts how many items or characters

type() Shows the data type of a value

range() Makes a range of numbers for loops

int(), str(), float() Convert between types

 14. Built-in Functions

These are functions that are always available in Python, without needing to import
anything.

print()

What it does: Displays text or values on the screen.

Example:

print("Hello")

shows Hello.

input()

What it does: Lets the user type something from the keyboard.

Returns: Always returns a string (even if you type a number).

Example:

name = input("What's your name? ")

print("Hello,", name)

len()

What it does: Tells you how many items are in a list, string, or dictionary.

Example:

len("hello")

returns 5.

type()

What it does: Tells you what kind of data a value is.

Example:

type(42)

returns <class 'int'>.

str(), int(), float()

What they do: Convert one type of value into another.

str(42) → '42'

int("5") → 5

float("3.14") → 3.14

range()

What it does: Generates a list of numbers (used often in loops).

Example:

range(5)

gives 0, 1, 2, 3, 4

 15. File Handling

Python can read from and write to text files.

open()

What it does: Opens a file to read or write.

Modes:

"r" = read

"w" = write (erases file first)

"a" = append (adds to the end)

read()

Reads the entire contents of the file.

write()

Writes the given string into a file.

with open(...) as …

Best practice for working with files.

It automatically closes the file after the block.

 16. Error Handling (Try-Except)

Used to handle situations that may cause your program to crash.

try: ... except: …

Tries to run the code inside try.

If an error occurs, it runs the code inside except.

Example:

try:

result = 5 / 0

except ZeroDivisionError:

print("You can't divide by zero.")

 17. Importing Modules

Modules are collections of functions and tools.

import math

Loads the math module which has extra math functions like sqrt() and constants like pi.

from math import pi, sqrt

Only imports pi and sqrt() instead of the whole module.

 18. Object-Oriented Programming (Classes and Objects)

Used to organize related code into objects with properties and actions.

class

A blueprint for creating objects.

__init__()

A special method that runs when you create a new object.

It initializes (sets up) the object's properties.

self

Refers to the object itself inside a class.

Example:

class Dog:

def __init__(self, name):

self.name = name

 19. List Comprehensions

A quick way to create new lists.

Normal way:

squares = []

for x in range(5):

squares.append(x**2)

List comprehension way:

squares = [x**2 for x in range(5)]

With condition:

evens = [x for x in range(10) if x % 2 == 0]

 20. Lambda Functions

A lambda is a small one-line function with no name.

Example:

add = lambda x, y: x + y

print(add(2, 3)) # 5

Used when you need a quick function just once, especially in functions like map() or
filter().

 21. map(), filter(), and reduce()

These functions apply logic to a list of items.

map(function, list)

Applies a function to each item in a list.

nums = [1, 2, 3]

squares = list(map(lambda x: x**2, nums))

filter(function, list)

Filters out items that don’t meet a condition.

even = list(filter(lambda x: x % 2 == 0, nums))

reduce(function, list)

Repeatedly combines two items until one result is left.

from functools import reduce

total = reduce(lambda x, y: x + y, nums)

 22. More Useful Functions

sorted(list)

Returns a new sorted list.

sorted([3, 1, 2]) # [1, 2, 3]

zip(list1, list2)

Combines elements from two or more lists.

zip([1, 2], ['a', 'b']) → [(1, 'a'), (2, 'b')]

enumerate(list)

Adds index numbers when looping.

for i, item in enumerate(["a", "b"]):

print(i, item)

any() and all()

any(): Returns True if any item is True.

all(): Returns True if all items are True.

any([False, True]) # True

all([True, True]) # True

 23. Working with JSON

json.dumps()

Converts a Python object (like a dictionary) into a JSON string.

json.loads()

Converts a JSON string back into a Python object.

Example:

import json

data = {"name": "Impala", "age": 25}

json_str = json.dumps(data)

parsed = json.loads(json_str)

print(parsed["name"]) # Impala

